Distinct Beta Frequencies Reflect Categorical Decisions

Resumen

Based on prior findings of content-specific beta synchronization in working memory and decision making, we hypothesized that beta oscillations support the (re-)activation of cortical representations by mediating neural ensemble formation. We found that beta activity in monkey dorsolateral prefrontal cortex (dlPFC) and pre-supplementary motor area (preSMA) reflects the content of a stimulus in relation to the task context, regardless of its objective properties. In duration- and distance-categorization tasks, we changed the boundary between categories from one block of trials to the next. We found that two distinct beta-band frequencies were consistently associated with the two relative categories, with activity in these bands predicting the animals’ responses. We characterized beta at these frequencies as transient bursts, and showed that dlPFC and preSMA are connected via these distinct frequency channels. These results support the role of beta in forming neural ensembles, and further show that such ensembles synchronize at different beta frequencies., How the brain achieves context-dependent, flexible categorization remains poorly understood. By looking at neural ensemble formation, this study finds that distinct beta rhythms signal categorical decisions, and category-selective neurons synchronize at those frequencies.

Publicación
Nature Communications